Bayesian Policy Search with Policy Priors
نویسندگان
چکیده
We consider the problem of learning to act in partially observable, continuous-state-and-action worlds where we have abstract prior knowledge about the structure of the optimal policy in the form of a distribution over policies. Using ideas from planning-as-inference reductions and Bayesian unsupervised learning, we cast Markov Chain Monte Carlo as a stochastic, hill-climbing policy search algorithm. Importantly, this algorithm’s search bias is directly tied to the prior and its MCMC proposal kernels, which means we can draw on the full Bayesian toolbox to express the search bias, including nonparametric priors and structured, recursive processes like grammars over action sequences. Furthermore, we can reason about uncertainty in the search bias itself by constructing a hierarchical prior and reasoning about latent variables that determine the abstract structure of the policy. This yields an adaptive search algorithm—our algorithm learns to learn a structured policy efficiently. We show how inference over the latent variables in these policy priors enables intraand intertask transfer of abstract knowledge. We demonstrate the flexibility of this approach by learning meta search biases, by constructing a nonparametric finite state controller to model memory, by discovering motor primitives using a simple grammar over primitive actions, and by combining all three.
منابع مشابه
Bayesian Optimization with Automatic Prior Selection for Data-Efficient Direct Policy Search
One of the most interesting features of Bayesian optimization for direct policy search is that it can leverage priors (e.g., from simulation or from previous tasks) to accelerate learning on a robot. In this paper, we are interested in situations for which several priors exist but we do not know in advance which one fits best the current situation. We tackle this problem by introducing a novel ...
متن کاملBayesian Policy Search for Multi-Agent Role Discovery
Bayesian inference is an appealing approach for leveraging prior knowledge in reinforcement learning (RL). In this paper we describe an algorithm for discovering different classes of roles for agents via Bayesian inference. In particular, we develop a Bayesian policy search approach for Multi-Agent RL (MARL), which is model-free and allows for priors on policy parameters. We present a novel opt...
متن کاملBayesian role discovery for multi-agent reinforcement learning
In this paper we develop a Bayesian policy search approach for Multi-Agent RL (MARL), which is model-free and allows for priors on policy parameters. We present a novel optimization algorithm based on hybrid MCMC, which leverages both the prior and gradient information estimated from trajectories. Our experiments demonstrate the automatic discovery of roles through reinforcement learning in a r...
متن کاملNonparametric Bayesian Policy Priors for Reinforcement Learning
We consider reinforcement learning in partially observable domains where the agent can query an expert for demonstrations. Our nonparametric Bayesian approach combines model knowledge, inferred from expert information and independent exploration, with policy knowledge inferred from expert trajectories. We introduce priors that bias the agent towards models with both simple representations and s...
متن کاملInsurance Policies for Monetary Policy in the Euro Area
Insurance Policies for Monetary Policy in the Euro Area* In this paper, we examine the cost of insurance against model uncertainty for the euro area considering four alternative reference models, all of which are used for policy analysis at the ECB. We find that maximal insurance across this model range in terms of a Minimax policy comes at moderate costs in terms of lower expected performance....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011